问题描述
I want to run Person Detection AI model on camera connected on CSI0, CSI1 & CSI2.
I followed triple camera example, but not getting success in running person detection model.
复现步骤
Run the code
Check stream output on canMV IDE
硬件板卡
LCKFB
软件版本
CanMV_K230_LCKFB_micropython_v1.4-0-g6cce59c_nncase_v2.9.0
其他信息
import time, os, sys, ujson, gc, math
from libs.AIBase import AIBase
from libs.AI2D import Ai2d
from libs.Utils import *
from media.sensor import *
from media.display import *
from media.media import *
import nncase_runtime as nn
import ulab.numpy as np
import image
import aicube
sensor0 = None
sensor1 = None
sensor2 = None
class PersonDetectionApp(AIBase):
def __init__(self,kmodel_path,model_input_size,labels,anchors,confidence_threshold=0.2,nms_threshold=0.5,nms_option=False,strides=[8,16,32],rgb888p_size=[224,224],display_size=[1920,1080],debug_mode=0):
super().__init__(kmodel_path,model_input_size,rgb888p_size,debug_mode)
self.kmodel_path=kmodel_path
# 模型输入分辨率
self.model_input_size=model_input_size
# 标签
self.labels=labels
# 检测anchors设置
self.anchors=anchors
# 特征图降采样倍数
self.strides=strides
# 置信度阈值设置
self.confidence_threshold=confidence_threshold
# nms阈值设置
self.nms_threshold=nms_threshold
self.nms_option=nms_option
# sensor给到AI的图像分辨率
self.rgb888p_size=[ALIGN_UP(rgb888p_size[0],16),rgb888p_size[1]]
# 显示分辨率
self.display_size=[ALIGN_UP(display_size[0],16),display_size[1]]
self.debug_mode=debug_mode
# Ai2d实例,用于实现模型预处理
self.ai2d=Ai2d(debug_mode)
# 设置Ai2d的输入输出格式和类型
self.ai2d.set_ai2d_dtype(nn.ai2d_format.NCHW_FMT,nn.ai2d_format.NCHW_FMT,np.uint8, np.uint8)
# 配置预处理操作,这里使用了pad和resize,Ai2d支持crop/shift/pad/resize/affine,具体代码请打开/sdcard/app/libs/AI2D.py查看
def config_preprocess(self,input_image_size=None):
with ScopedTiming("set preprocess config",self.debug_mode > 0):
# 初始化ai2d预处理配置,默认为sensor给到AI的尺寸,您可以通过设置input_image_size自行修改输入尺寸
ai2d_input_size=input_image_size if input_image_size else self.rgb888p_size
top,bottom,left,right,_=center_pad_param(self.rgb888p_size,self.model_input_size)
self.ai2d.pad([0,0,0,0,top,bottom,left,right], 0, [0,0,0])
self.ai2d.resize(nn.interp_method.tf_bilinear, nn.interp_mode.half_pixel)
self.ai2d.build([1,3,ai2d_input_size[1],ai2d_input_size[0]],[1,3,self.model_input_size[1],self.model_input_size[0]])
# 自定义当前任务的后处理
def postprocess(self,results):
with ScopedTiming("postprocess",self.debug_mode > 0):
# 这里使用了aicube模型的后处理接口anchorbasedet_post_preocess
dets = aicube.anchorbasedet_post_process(results[0], results[1], results[2], self.model_input_size, self.rgb888p_size, self.strides, len(self.labels), self.confidence_threshold, self.nms_threshold, self.anchors, self.nms_option)
return dets
def draw_result(dets):
global display_size, labels
img = image.Image(display_size[0], display_size[1], image.ARGB8888)
if dets:
img.clear()
for det_box in dets:
x1, y1, x2, y2 = det_box[2],det_box[3],det_box[4],det_box[5]
w = float(x2 - x1) * display_size[0] // rgb888p_size[0]
h = float(y2 - y1) * display_size[1] // rgb888p_size[1]
x1 = int(x1 * display_size[0] // rgb888p_size[0])
y1 = int(y1 * display_size[1] // rgb888p_size[1])
x2 = int(x2 * display_size[0] // rgb888p_size[0])
y2 = int(y2 * display_size[1] // rgb888p_size[1])
if (h<(0.1*display_size[0])):
continue
if (w<(0.25*display_size[0]) and ((x1<(0.03*display_size[0])) or (x2>(0.97*display_size[0])))):
continue
if (w<(0.15*display_size[0]) and ((x1<(0.01*display_size[0])) or (x2>(0.99*display_size[0])))):
continue
img.draw_rectangle(x1 , y1 , int(w) , int(h), color=(255, 0, 255, 0), thickness = 2)
img.draw_string_advanced( x1 , y1-50,32, " " + labels[det_box[0]] + " " + str(round(det_box[1],2)), color=(255,0, 255, 0))
else:
img.clear()
return img
try:
rgb888p_size = [1920, 1080]
kmodel_path="/sdcard/examples/kmodel/person_detect_yolov5n.kmodel"
confidence_threshold = 0.2
nms_threshold = 0.6
labels = ["person"]
anchors = [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326]
print("camera_test")
# sensor0
sensor0 = Sensor(id = 0, width = 1920, height = 1080, fps = 30)
sensor0.reset()
sensor0.set_framesize(width = 960, height = 540)
sensor0.set_pixformat(Sensor.YUV420SP)
sensor0.set_framesize(width = 1920, height = 1080, chn=CAM_CHN_ID_2)
sensor0.set_pixformat(PIXEL_FORMAT_RGB_888_PLANAR, chn=CAM_CHN_ID_2)
bind_info = sensor0.bind_info(x = 0, y = 0)
Display.bind_layer(**bind_info, layer = Display.LAYER_VIDEO1)
# sensor1
sensor1 = Sensor(id = 1, width = 1920, height = 1080, fps = 30)
sensor1.reset()
sensor1.set_framesize(width = 960, height = 540)
sensor1.set_pixformat(Sensor.YUV420SP)
bind_info = sensor1.bind_info(x = 960, y = 0)
Display.bind_layer(**bind_info, layer = Display.LAYER_VIDEO2)
# sensor2
sensor2 = Sensor(id = 2, width = 1920, height = 1080, fps = 30)
sensor2.reset()
sensor2.set_framesize(width = 960, height = 540)
sensor2.set_pixformat(Sensor.RGB888)
Display.init(Display.LT9611, to_ide = True)
display_size=[Display.width(),Display.height()]
MediaManager.init()
# multiple sensor only need one excute run()
sensor0.run()
person_det=PersonDetectionApp(kmodel_path,model_input_size=[640,640],labels=labels,anchors=anchors,confidence_threshold=confidence_threshold,nms_threshold=nms_threshold,nms_option=False,strides=[8,16,32],rgb888p_size=rgb888p_size,display_size=display_size,debug_mode=0)
person_det.config_preprocess()
while True:
os.exitpoint()
cur_frame = sensor0.snapshot(chn=CAM_CHN_ID_2)
res=person_det.run(cur_frame)
osd_img = draw_result(res)
Display.show_image(osd_img, 0, 0, Display.LAYER_OSD3)
img = sensor2.snapshot()
Display.show_image(img, x = 0, y = 540)
except KeyboardInterrupt as e:
print("user stop: ", e)
except BaseException as e:
import sys
sys.print_exception(e)
finally:
# multiple sensor all need excute stop()
if sensor0 is not None:
sensor0.stop()
if sensor1 is not None:
sensor1.stop()
if sensor2 is not None:
sensor2.stop()
# or call Sensor.deinit()
# Sensor.deinit()
# deinit display
Display.deinit()
os.exitpoint(os.EXITPOINT_ENABLE_SLEEP)
time.sleep_ms(100)
# deinit media buffer
MediaManager.deinit()